
Documentation for GoRide

The online cab booking service providers care the price of traveling based on the
distance of travel trip and type of car, traffic, and waiting prices. There are
numerous apps available in the android play store and apple app store for cab
booking in India.

Selecting the greatest taxi booking apps in India is tough, which may vary from
town to town.

Basic knowledge required to setup

1. Real server Server related knowledge like apache or local machine server, we
preferred to use a real server

2. Server related knowledge and we preferred cPanel in your server for quick
installation

3. Basic knowledge in PHP, Laravel and Flutter if you want to do some
customization yourself (Not compulsory).

4. Basic knowledge about google cloud and firebase

Server Requirement

1. Laravel 10.x requires a minimum PHP version of 8.1

2. Support for MySQL v5.7

3. Apache Server (Recommended)

4. Mod_rewrite Apache

5. PDO Extension and other required modules of PHP

6. Firebase Account

7. Firebase Database

8. Google MAP API Key



Admin Panel Setup

Step 1: After downloading the source code unzip goride_source_code.zip and
upload the goride_admin_panel.zip file and extract to the root directory of your
server.
For example: /var/www/html/ or /home/yourusername/public_html or whatever is
the root folder of your domain or subdomain. Which will make it reachable as
follows: http://yourdomain.com/

Step 2: Create a new database from your server MYSQL database

Step 3: Create a DB user to the database and link that database to the DB user
Note: Give all permission to your user by Check on “All PRIVILEGES”

http://yourwebsitename/


Step 4: Update your database credentials (DB_DATABASE, DB_USERNAME
&DB_PASSWORD) to.env file which exist at root path of admin panel

Step 5: Click on the Import Database button and import the admin database
goride_admin_database.sql file.



Step 6: Update your APP_NAME & APP_URL In .env file

Now you can access your admin panel with your desired domain.

Login with default admin credentials
Username: admin@goride.com
Password: 12345678

Landing Page Setup

Step 1: After downloading the source code unzip goride_source_code.zip and
upload the goride_landing_panel.zip file and extract to the root directory of your
server.
Like: http://landing.yourdomain.com/ or whatever which you like.
Please use subdomain of your main domain for landing page setup
(Recommended)

Step 2: Update firebase credentials at .env file of landing page site.

Notes: Please use this same firebase credentials for landing page setup which
you will add for admin panel setup on .env file.

Now you can access your landing page at your desired domain
For ex: http://landing.yourdomain.com/

mailto:admin@goride.com
http://yourwebsitename/
http://yourwebsitename/


Firebase Project Setup/Configuration

Create Firebase project

Step 1: Go to the firebase console using this link https://firebase.google.com/

Step 2: Click on “Go to console” in the top right corner.

Step 3: Click on “Add project”, it will redirect you to the new project creation
page Enter your project name and click on “Continue” again click on “Continue”
after that select “Default Account fo firebase” and then click on “Create Project”

https://firebase.google.com/


Step 4: After creating a new project it will redirect you to the overview page on
this page click on icons like

It will redirect you to the “Add Firebase to your web app” page enter your app
nickname and click on “Register app” after clicking on it scroll down you can see
details like below



You can add these firebase project details in the project’s .env file.

Step 5: Create a RealTime database and copy url and add into project’s .env file.

Step 6: After that click on “Firestore Database” in the left sidebar and select your
project name from the drop-down and click on “Create database”



Step 7: Select the preferable option for you and click on the Next button then
click on “Enable”.

Step 8: Firstore Database Rules Update.

Step 9: Enable Firebase Authentication Methods

To enable Firebase Authentication, go to Firebase Console -> Authentication ->
Sign-in Methods and enable the methods that you are going to support in your
app. By default, our Flutter apps have integration with Phone, Google and Apple.



See video for more : GORIDE - How to setup/configure Firebase Project?

Firestore Database Collection Import/Export

Step 1: Setup NPM in your Computer URL: https://nodejs.org/en/download

Step 2: Extract Source Code of firbase-import-export-functions.zip

Step 3: We have to open command prompt on project folder and run command :
“npm install”

Step 4: Setup Firebase Project if you have not created.

Step 5: Configure serviceAccountKey.json file. you can get from forbase
Project settings

Go to ->Service account -> Select Node.js -> Generate new private key Wait untill
create key this will auto download. and Replace with current
serviceAccountKey.json

https://youtu.be/4DUyBwdxtEM
https://nodejs.org/en/download


Step 6: Run command on project folder bellow import commands All Collections
are in Folder name “GoRideDataSeed” One By one You have to run command for
import each collection

See video for more : GORIDE : How to import/export collections in firebase?

# IMPORT Commands:

node import.js GoRideDataSeed/airports.json

node import.js GoRideDataSeed/banner.json

node import.js GoRideDataSeed/cms_pages.json

node import.js GoRideDataSeed/coupon.json

node import.js GoRideDataSeed/currency.json

node import.js GoRideDataSeed/documents.json

node import.js GoRideDataSeed/driver_rules.json

node import.js GoRideDataSeed/faq.json

node import.js GoRideDataSeed/freight_vehicle.json

node import.js GoRideDataSeed/languages.json

node import.js GoRideDataSeed/on_boarding.json

node import.js GoRideDataSeed/service.json

node import.js GoRideDataSeed/settings.json

node import.js GoRideDataSeed/tax.json

node import.js GoRideDataSeed/vehicle_type.json

# Not compulsory to run this commands:

https://youtu.be/R3RO5PC2U38


node import.js GoRideDataSeed/bank_details.json

node import.js GoRideDataSeed/driver_document.json

node import.js GoRideDataSeed/driver_users.json

node import.js GoRideDataSeed/intercity_service.json

node import.js GoRideDataSeed/orders.json

node import.js GoRideDataSeed/orders_intercity.json

node import.js GoRideDataSeed/referral.json

node import.js GoRideDataSeed/review_customer.json

node import.js GoRideDataSeed/review_driver.json

node import.js GoRideDataSeed/sos.json

node import.js GoRideDataSeed/users.json

node import.js GoRideDataSeed/wallet_transaction.json

node import.js GoRideDataSeed/withdrawal_history.json

# Export commands:

node export.js airports

node export.js bank_details

node export.js banner

node export.js cms_pages

node export.js coupon



node export.js currency

node export.js documents

node export.js driver_document

node export.js driver_rules

node export.js driver_users

node export.js faq

node export.js freight_vehicle

node export.js intercity_service

node export.js languages

node export.js on_boarding

node export.js orders

node export.js orders_intercity

node export.js referral

node export.js review_customer

node export.js review_driver

node export.js service

node export.js settings

node export.js sos

node export.js tax

node export.js users



node export.js vehicle_type

node export.js wallet_transaction

node export.js withdrawal_history

Query Indexing

While viewing the admin panel if you see a processing loader then please open your
browser console and check the errors. If the errors showing below snap then click on the
given URL to do indexing. And it will create index in firebase automatically and errors will
be removed from the page.

Deploy Firebase Functions

Note: To deploy Firebase Functions, you need to make sure you upgrade your
Firebase Pricing Plan to Blaze.

Step 1: Setting up Node.js and the Firebase CLI

Use the Firebase doc (https:// rebase.google.com/docs/functions/get-started) if
you encounter any issues.

Node.js and Firebase CLI is needed to write functions and deploy them to the
Cloud
Functions.



Install Node.js (https://nodejs.org/en/) and npm (https://www.npmjs.com/), Node
Version Manager (https://github.com/nvmsh/nvm/blob/master/README.md).

After Node.js and npm are installed, install the Firebase CLI.

Use: “npm install -g firebase-tools” command.

Step 2: Initialize your project

An empty project containing sample code is created when you initialize Firebase
SDK for cloud functions.

Authenticate the firebase tool by running the firebase login via browser
You need to create a new “MyFirebaseFunctions” empty folder

Go to the source code and find firebase-cloud-functions.zip file and extract it and
go to
firebase-cloud-functions > functions folder add your firebase credentials in
serviceAccountKey.json, index and .firebaserc file.

Step 3: Deploy Firebase Functions

Open powerShell from firebase-cloud-functions > functions and run command

“npm install”

“firebase login” (Select Y(yes) and It will redirect to browser and login with
google account which you used for firebase)

Now after successfully login simply run this command

“firebase deploy –only functions”

And it deploy your firebase cloud function and you can also check status in CLI



After successfully deploying the functions you can go to your Firebase Console
and check, as the functions have been deployed.

Step 4: Watch Firebase Functions for Errors

It is possible to see the logs for each function, understand the output, and know
when it gets called.

Note: To run properly, some firebase functions need the creation of indexes on
certain firestore collections.

Use the app and watch the logs for the firebase functions in the console.

If you happen to get an error of missing index, simply click on the URL of that
error, and the index will get created automatically.

There is no need to deploy functions again, but wait until the index is created,
before testing the app again.

See video for more : GORIDE - How to setup Cloud function in Firebase

Create Google Map API Key

1. Go to the Google Maps Platform

2. Click the Get Started button in the middle of the screen.

3. Click on the Google Cloud Platform home in the upper left corner.

4. Click on Billing to make sure your billing details are up-to-date. If they are not,
your Google Maps will not work properly.

5. Once you’ve confirmed your billing is up-to-date, click on the Google Cloud
Platform home in the upper left corner again.

https://youtu.be/SN7UcnWSDNg
https://cloud.google.com/maps-platform


6. Hover to APIs & Services and go to Credentials.
7. If you want to use an existing project, please select it from the list. Otherwise,
select ‘Create a new project’ and enter a project name.

8. Click Create credentials and select API key. You will see a new dialog that
displays the newly created API key.

9. Click the Close button in the API key dialogue. Your new API key will be listed
on the Credentials page under API keys

Admin Panel - Update

To update the admin panel just upload our latest source code zip file in your
project root folder and extract it.

If you customized something on the code and want to update to our latest version
then you can follow any one option from following this.

1. First push your code on a git branch then download our latest version
source code from codecanyon and push it to another branch. And then you



can merge the changes between current version and previous version code
and merge both branches and it is possible to get conflicts on branches.

2. Download the our latest version source code from codecanyon and apply.

Application Setup

How to set up the project

Change App Name​(For both application customer and driver follow same
step)

1. Change the value of label from
<project>/android/app/src/main/AndroidManifest.xml

2. Change the value of CFBundleName from (For both application customer and
driver follow same step)



<project>/iOS/Runner/info.plist

Change App Package (For both application customer and driver follow
same step)

First you have to find out the existing package name. You can find it out from the
top of the /app/src/main/AndroidManifest.xml file. Now on the right side of the
project folder from VSCode. In the first box you have to put the existing package
name that you saw in the AndroidManifest.xml file previously and write down
your preferred package name in the second box and then click on Replace All



button.

Replace Map key

1. Android

<project>/android/app/src/main/AndroidManifest.xml

2. IOS

<project>/ios/Runner/AppDelegate.swift



Setup with firebase

1. Setup with firebase using flutterFire.
a. Follow this link to setup with firebase :-

https://firebase.google.com/docs/flutter/setup?platform=ios

b. Video link :- Add Firebase to your Flutter app: The fast way

2. Setup manually.
a. For Android

https://www.youtube.com/watch?v=FkFvQ0SaT1I&ab_channel=Firebase
https://firebase.google.com/docs/flutter/setup?platform=ios


b. Enter package name

c. Download google-services.json file.

d. Place google-services.json file in <project>/android/app/



e. For IOS.
1. Add App

1(i). Enter package name and download GoogleService-Info.plist



1(ii). Place GoogleService-Info.plist in <project>/iOS/

Generate SHA-1 for Flutter

Link :-
https://stackoverflow.com/questions/51845559/generate-sha-1-for-flutter-react-nat
ive-android-native-app

App build & release

1. Build for Android
For debug build you can run command:
flutter build apk
You will get a larger merged apk with this. But you can split them with this
command:
flutter build apk --target-platform android-arm,android-arm64,android-x64
--split-per-abi
Build file location: <project>/build/app/outputs/flutter-apk/ For deploying it
please follow this documentation:
https://docs.flutter.dev/deployment/android

https://stackoverflow.com/questions/51845559/generate-sha-1-for-flutter-react-native-android-native-app
https://stackoverflow.com/questions/51845559/generate-sha-1-for-flutter-react-native-android-native-app
https://docs.flutter.dev/deployment/android


2. Build for iOS
There is no general way to generate apps for iOS. Apple doesn’t allow you
to install apps like this. If you want to install it on your iOS device then you
have to deploy it on TestFlight or AppStore. For deploying it please follow
this documentation: https://docs.flutter.dev/deployment/ios

How to Change Flutter Package Name

Here are the steps to change the package name in Flutter for both Android and iOS:

Android (in AndroidManifest.xml and build.gradle):

1. Open the android/app/src/main/AndroidManifest.xml file.

2. Locate the package attribute in the <manifest> element. Change the value to
your desired package name.

3. Open the android/app/build.gradle file.
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.newpackagename">
<!-- ... other configurations ... -->

</manifest>

4. Locate the applicationId field inside the defaultConfig block. Update it with
the new package name.

android {
defaultConfig {

applicationId "com.example.newpackagename"
// ... other configurations ...

}
}

iOS (in Info.plist):

1. Open the ios/Runner/Info.plist file.
2. Look for the CFBundleIdentifier key. Change the value to your new

package name.

https://docs.flutter.dev/deployment/ios


<key>CFBundleIdentifier</key>
<string>com.example.newpackagename</string>

Important notes:

● After changing the package name, you might need to run flutter clean in the
terminal to remove any cached build files.

● Make sure to update any references to the old package name in your code, such
as imports or other configurations that use the package name.

● If you are using Firebase or other services that rely on the package name, you
may need to update the configuration on those platforms as well.

● Changing the package name can impact the app's update mechanism on app
stores. Ensure you understand the implications before making such changes,
especially for apps already published.

After making these changes, you should be able to run your Flutter app with the new
package name on both Android and iOS platforms.

How to Change Flutter App Name

1. Open the pubspec.yaml file in the root of your Flutter project.

2. Locate the name field in the file. It typically looks like this:
name: your_app_name

3. Change the value of the name field to your desired application name. For
example:
name: new_app_name

4. Save the changes to the pubspec.yaml file.
5. Run the following command in your terminal to get the updated dependencies:

flutter pub get

6. After updating the pubspec.yaml and running flutter pub get, your
application name should be updated.

Keep in mind that changing the application name won't automatically update the
display name on the device home screen or app launcher. For that, you may need to
update the applicationLabel in the AndroidManifest.xml file for Android, and the
CFBundleName and CFBundleDisplayName in the Info.plist file for iOS.



For Android (located in android/app/src/main/AndroidManifest.xml), you might find
something like:

<application
android:label="Your App Name"
...

>
...

</application>

For iOS (located in ios/Runner/Info.plist), you might find something like:

<key>CFBundleName</key>
<string>$(PRODUCT_NAME)</string>

<key>CFBundleDisplayName</key>
<string>Your App Name</string>

Update the values accordingly and rebuild the app for the changes to take effect. After

making these changes, the updated application name should be reflected on both

Android and iOS devices.

How to Change Launcher Logo/Icon

Using a Package (flutter_launcher_icons):

Dev_dependencies:
flutter_launcher_icons: ^0.9.2

1. Run flutter packages get in the terminal to fetch the package.

2. Open your pubspec.yaml file and add the following dependency:
flutter_icons:

android: true
ios: true
image_path: "assets/icon/app_icon.png"

Make sure to replace "assets/icon/app_icon.png" with the path to your custom
icon image.

3. Run the following command in the terminal to generate the icons:
flutter pub run flutter_launcher_icons:main



4. Build and run your app:
flutter run

Manual Method:

1. Prepare your custom icon image and place it in a suitable location within your
project. For example, you can create a folder named assets in the root of your
project and place the icon there.

2. Open your pubspec.yaml file and add the following section to include the
assets:
Flutter:

assets:
- assets/icon/app_icon.png

Make sure to adjust the path based on your project structure.

3. For Android:
Replace the launcher icon in the android/app/src/main/res/mipmap folder. You
will typically find folders like mipmap-hdpi, mipmap-mdpi, mipmap-xhdpi, etc.
Replace the launcher icon in each of these folders.

4. For iOS:
Replace the launcher icon in the ios/Runner/Assets.xcassets folder. There
should be an AppIcon set with various icon sizes for different iOS devices.
Replace the icons in each size.

5. Build and run your app:
flutter run

These steps should help you change the launcher icon in your Flutter app either using
a package or manually.



How to Create Project in Firebase

1. Visit the Firebase Console:
● Open your web browser and go to the Firebase Console.

2. Sign in with Google:
● If you don't have a Google account, you'll need to create one. Otherwise,

sign in with your existing Google account.
3. Create a New Project:

● Click on the "Add project" button.
4. Enter Project Name:

● Enter a name for your project in the provided field.
5. (Optional) Modify Project ID:

The project ID is automatically generated based on the project name. If needed,
you can modify it.

6. Select Google Analytics:
● You can choose to enable Google Analytics for your project. This step is

optional.
7. Accept Terms and Click "Create Project":

● Read and accept the terms, then click on the "Create project" button.
8. Wait for Project Creation:

● Firebase will take a moment to create your project. Once it's done, you'll be
redirected to the project dashboard.

Now you have successfully created a project in Firebase. From the project dashboard,
you can access various Firebase services, configure settings, and integrate Firebase
into your applications.

Remember that Firebase provides a variety of services, so you may want to explore
and configure specific services based on your project requirements. For example, you
might want to set up authentication, a real-time database, cloud functions, or hosting
for your web application. Each service has its own configuration steps, which you can
find in the Firebase documentation.

Always refer to the official Firebase documentation for the most up-to-date and
detailed information.



How to Setup Firebase Project in Flutter

Using Firebase CLI:

1. Install Firebase CLI:

Make sure you have Node.js and npm installed on your machine.

Install the Firebase CLI by running the following command in your terminal or
command prompt:

npm install -g firebase-tools

2. Login to Firebase:
Run the following command to log in to Firebase using your Google account:
firebase login

3. Create a Firebase Project:
Go to the Firebase Console, and click on "Add project."
Follow the instructions to create a new project.

4. Initialize Firebase in your Flutter project:
Navigate to your Flutter project's root directory in the terminal.
Run the following command to initialize Firebase in your project:
firebase init

Follow the prompts to select the features you want to use (e.g., Firestore,
Authentication) and set up the necessary configurations.

5. Update Firebase Configuration in Flutter:
After initialization, Firebase CLI will create a firebase.json file. Use the
generated configuration in your Flutter app.
Make sure to copy the configuration settings for each feature you've enabled
(e.g., Firestore, Authentication).

Manual Integration:

1. Add Firebase to Flutter:
Open your Flutter project and add the firebase_core and other Firebase
packages to your pubspec.yaml file:



dependencies:
firebase_core: ^latest_version
firebase_auth: ^latest_version # Example: Add other Firebase

packages
cloud_firestore: ^latest_version

2. Initialize Firebase in Flutter:
In your main Dart file (e.g., main.dart), initialize Firebase in the main function:

import 'package:flutter/material.dart';
import 'package:firebase_core/firebase_core.dart';

void main() async {
WidgetsFlutterBinding.ensureInitialized();
await Firebase.initializeApp();
runApp(MyApp());

}

3. Use Firebase Services:
You can now use Firebase services like Firestore, Authentication, etc., in your
Flutter app.

4. Add Firebase Configuration:
Add the Firebase configuration settings (copied from the firebase.json file
during
Firebase CLI initialization) to your app. For example, add them to your
android/app/google-services.json file for Android and
ios/Runner/GoogleService-Info.plist for iOS.

5. Run Your App:
Run your Flutter app using the following command:
flutter run

This process involves both Firebase CLI and manual steps to integrate Firebase
services into your Flutter project. Ensure that you have the necessary dependencies in
your pubspec.yaml file and configure Firebase according to your project's needs.

​
​



How to Change Google Map Key in Flutter

Android (AndroidManifest.xml):

1. Open the AndroidManifest.xml file in the android/app/src/main directory of your

Flutter project.

2. Locate the <meta-data> element inside the <application> element, which
contains the Google Maps API key. It should look something like this:

<application>
...
<meta-data

android:name="com.google.android.geo.API_KEY"
android:value="YOUR_API_KEY_HERE" />

...
</application>

3. Replace "YOUR_API_KEY_HERE" with your actual Google Maps API key.

iOS (AppDelegate.swift):

1. Open the AppDelegate.swift file in the ios/Runner directory of your Flutter
project.

2. Locate the application(_:didFinishLaunchingWithOptions:) method and
find the code that sets the Google Maps API key. It should look something like
this:
GMSServices.provideAPIKey("YOUR_API_KEY_HERE")

3. Replace "YOUR_API_KEY_HERE" with your actual Google Maps API key.

Important notes:

● Make sure that you have the appropriate API key for both Android and iOS
platforms from the Google Cloud Console.

● Ensure that the API key has the necessary permissions for the Google Maps SDK.
● Keep your API keys secure and do not expose them publicly, especially in version

control repositories.



After making these changes, rebuild your Flutter project for both Android and iOS
platforms to apply the updated API keys. You can do this by running flutter clean

followed by flutter run in your project directory.
​

See video for more: GORIDE - How to SetUp GoRide Flutter application?

IMPORTANT NOTES
1) If you’re facing the following attached error while setting up the project, make
sure you have downloaded google-service.json file from the firebase and replace
the original one.If you do not replace google-service.json then you will face the
below image issue. Although, if you will face any kind of issue related to this, feel
free to raise a support ticket to https://support.siddhiinfosoft.com

2) If you’re facing the following attached error while setting up the project, make
sure you have successfully configured your firebase project otherwise the
application won’t work.

https://youtu.be/ErDpn10VijA
https://support.siddhiinfosoft.com


Thank You
© 2023 GoRide. All Rights Reserved.


